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Abstract
With the recent advances and burgeoning interest
in self-driving cars, processing and understand-
ing the environment around the car has become
an important problem. In this project we focus
on Bird Eye View (BEV) prediction based on
monocular photos taken by the cameras on top
of the car. We present a Maximum Mean Dis-
crepancy Variational Auto Encoder (VAE) to pre-
dict the BEV road layout. We also contribute an
approach combining Image Warping, U-Net and
Post-processing to predict the bounding boxes
(BB) on the BEV layout. We achieved 0.81 test
threat score on the road layout prediction task and
0.07 test threat score on the BB prediction task.
Figure 1 visualizes the predictions of our final
models.

Figure 1. Example from validation set: input photos, target and
prediction of our best model on validation example (segmentation
maps and final prediction).

*Equal contribution 1Center for Data Science, New York Uni-
versity, New York, New York.

1. Related Work
One of the early works trying to predict BEV road layout
from monocular photos was done by (Schulter et al., 2018).
They train a CNN to predict the semantic segmentation map
and depth map of a given photo. They combine these pre-
dictions and warp them into the BEV. They use supervisory
signals from segmentation maps of the monocular photos
and a depth sensor to train their CNN. Furthermore, they
refine their outputs using supervisory signals from Open-
StreetMap (OSM) data.

A related approach was pursued by (Lu et al., 2018) wherein
they trained a Variational Auto Encoder to do the same
task. However, in addition to predicting the BEV road and
sidewalk layouts like in (Schulter et al., 2018), they predict
a semantic map BEV with different colors for road, terrain,
sidewalk, etc. Interestingly, they obtained their supervisory
signal by generating weak ground truth using the semantic
and depth maps of the input photo.

Improving on these works, in (Mani et al., 2020) the authors
trained an end-end deep learning model that predicts BEV
road layout and BEV BB segments of objects in the scene.
They used two separate decoders and a shared encoder to
predict static (road) pixels and dynamic (object) pixels in
their output. Additionally, like in (Schulter et al., 2018)
they use OSM data for adversarial training to refine their
predictions.

2. Data Description
Given 6 monocular RGB photos of size 256 × 306 that
capture the 360◦ scene around the ego car, the task of the
project is to predict the BEV of the scene with the ego car
in the center, specifically the goal is to predict the road and
the cars. The target is an 800 × 800 binary map with 1
indicating presence of road. The target also contains the
BBs coordinates for all objects found in the scene.

We had a total of 134 scenes in the given dataset, each
scene spans 25 seconds of the ego car’s journey divided into
126 samples (snapshots at given timestamp), each sample
containing 6 monocular photos. Out of these 134 scenes,
28 scenes were labelled scenes with the road maps and
corresponding BBs available as labels. We use first 25
labelled scenes as the training set and remaining 3 scenes
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as validation set. Also for the road layout task, we did data
augmentation during training using torch transforms. We
used grayscale, horizontal flip, color distortion and Gaussian
blurring.

To better understand the data, we visualized the distribution
of roads and cars in the training set as a probability map,
shown in Figure 2.

3. Uniqueness of the Task
In our task, we have ground truth labels available for BEV
layout and no labels for segmentation / depth estimation
for monocular photos. This is in contrast to the the works
described in section 1 and most other works in the domain
of BEV prediction where semantic / depth maps are usually
used in training.

Moreover, for object detection in particular, successful ap-
proaches like Faster RCNN, YOLO, Mask RCNN, Reti-
naNet use Region Proposal Networks / Feature Pyramid
Networks that are trained using high resolution pixel-level
segmentation maps of images. These need lots of high
quality data to train irrespective of whether they are single
stage or two-stage methods. This enables these architec-
tures to even regress BB coordinates precisely. In our task,
we do not have access to such high quality segmentation
maps for our monocular photos. The best way we can use
such architectures is to generate weak ground truth by using
homography or other mapping techniques to transfer BBs
from our BEV targets to our monocular photos. We do not
use RPN/FPN architectures like in Mask RCNN/RetinaNet
because such architectures would need lots of data, high
quality segmentation maps as labels and consequently lots
of compute power as well.

4. Methodology
4.1. Baseline

While analyzing the data using the probability maps shown
in Figure 2, we create simple baselines for both tasks, again
shown in Figure 2. For road layout prediction, our baseline
always predicts two roads and obtains a validation threat
score of 0.72. For BBs prediction, our baseline always
predicts a line of parked cars to the right of the ego car and
obtains a validation threat score of 0.011.

4.2. General Approach

Inspired by (Mani et al., 2020), we wanted to build an end-
to-end deep learning model for our task.

Naturally, we split our task into two: road layout prediction
and BB prediction. We treat both tasks as semantic segmen-
tation problems and train models for each task separately.

Figure 2. Above: Probability distribution of target maps for roads
and cars in train set. Note that the color scale for cars is [0, 0.5].
Below: Baseline models for both tasks shown in orange.

This way we can test the same architecture for both tasks.
Though each scene captures continuous journey of the ego
car, we do not use temporal information. We use 6 monoc-
ular photos at a given timestamp as input. Since we are
predicting binary maps as targets, we use cross entropy loss.

4.3. Road Layout Prediction

For the Road Layout prediction, we use the 6 raw photos
as input and predict 800 × 800 tensor of pixel-wise prob-
abilities and use a fixed threshold to convert it to a binary
map. We experimented with several architectures such as
Autoencoder (AE), VAE and MMD VAE described in detail
below.

Autoencoder The first architecture we tested was a vanilla
AE. We use a shared encoder to get representations from
each of the six photos, concatenate the six tensors along the
channel dimension and pass the resultant tensors into our
decoder which outputs a 800× 800 binary map. Our shared
encoder is a ResNet18 backbone with the final linear layer
removed. We also change the output shape of the penulti-
mate Average Pooling layer of ResNet18 from (1,1) to (8,8).
Our decoder is a sequential stack of transpose convolutional
layers with batch norm and Leaky ReLU layers inbetween.
We have a final sigmoid activation layer in our decoder.

Variational Autoencoder A natural extension to improv-
ing the AE was introducing regularization in the latent di-
mension by using variational sampling and inference. So,
the second architecture we tried was a VAE. To implement
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the VAE, we modified the AE architecture by introducing
a separate variational module. The module takes the con-
catenated representation from the shared encoder, passes
them through intermediate convolutional layers and outputs
the mean and variance tensors (4096-dim tensors) for the
VAE. The decoder uses these tensors to generate a sample
from the normal distribution and deconvolves this sample
to the output 800× 800 map. We also add a KL divergence
term to our Cross Entropy loss. During inference, the mean
vector is directly used as the sample.

Information Maximizing Variational Autoencoder
Though we obtained good performance with our VAE,
to further improve on our results on the Road Layout
task, we implemented infoVAE (Zhao et al., 2017). The
authors of the paper introduce the Information Maximizing
VAE which improves VAE by using a Maximum Mean
Discrepancy (MMD) divergence instead of the traditional
KL Divergence. The MMD divergence tries to match
distributions on all their moments instead of the ELBO
approach. As shown in the paper, the KL divergence term
can encourage uninformative latent codes and over-estimate
the variance in feature space. MMD overcomes those
pitfalls of KL divergence. Practically, implementing MMD
involved replacing the variational module and the KL
divergence loss term from our VAE to accommodate the
MMD variational sampling and inference.

4.4. Bounding Boxes Prediction

For the BBs prediction, due to the uniqueness of our task as
elaborated in section 3, we approach it as a semantic seg-
mentation task. We convert target BB maps to segmentation
maps using scipy.spatial library as shown in Figure 3.

(a) Bounding Boxes (b) Segmentation target

Figure 3. Target transformation for BBs prediction task

Though we tried all the architectures described above, we
did not get great performance for predicting BBs. Our
winning model uses a combination of Image Warping, U-
Net and Post-processing which are described in detail below.

Image Warping Following convention in prior works, to
combine the six input photos we first pass them through

an encoder and concatenate the six representations. This
approach works well for the Road Layout task but not the
BB task.

Thus, for BBs prediction we use a different approach. We
project each camera view to a BEV using Kornia (Riba
et al., 2020) and combine them into one image as shown in
Figure 4. For projecting, we use fixed projection matrices
found by mapping corners of each camera view to corners
of the corresponding BEV segment. We project only the
lower part of the photo (below horizon), so we lose some
information, e.g. traffic lights, top parts of the cars. We use
this projected image, representing the combined BEV of the
six input photos, as the input to our U-Net architecture.

Figure 4. Left: raw camera views. Right: warped and glued camera
views and target cars map (in light yellow)

U-Net U-Net (Ronneberger et al., 2015) has shown great
performance on image segmentation tasks. U-Net consists
of a contracting network that gradually reduces the size
while increasing the number of channels and an upsampling
module (with transpose convolutions) that uses the outputs
of contracting network at different levels. For this task we
use U-Net with a ResNet 34 encoder. We could not use
U-Net directly as we did not have labels for photos, so we
project raw photos to BEV as described above. To speed up
the training, we downsample the combined image to a size
of 200× 200 before feeding into the model and upsample
the output image back to 800× 800. This architecture was
tested only for BB task.

Post-processing After predicting the probability map, we
use a threshold to get a binary map, then we convert the pre-
dicted blobs of pixels back to BB coordinates using OpenCV
library. Additionally, we do post-processing of the predicted
BBs: removing boxes that are too small and splitting up
boxes that are unnaturally long compared to a car’s size
(results can be seen in Figure 1).

5. Results
Threat score is used for model evaluation on both tasks. Test
TS corresponds to the scores received on our submissions.
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MODEL VAL TS TEST TS

BASELINE - TWO ROADS 0.71 -
AE 0.79 -
VAE 0.84 0.76
MMD VAE 0.90 0.81

Table 1. Validation threat scores for our architectures on Road
Layout Task

From Table 1, we can see that, as expected, MMD VAE
outperforms the other models in the Road Layout prediction
task and is our winning model with a test threat score of
0.81. Figure 1 shows prediction on a validation example.
The model learns to predict two straight roads that appear in
most of the train examples. It also memorizes crossroads, in-
tersections, and parking lots, even when they are not visible
in photos, because scenes are similar.

MODEL VAL TS TEST TS

BASELINE - LINE OF PARKED CARS 0.011 -
VAE 0.020 0.020
VAE + POST-PROCESSING (PP) 0.033 -
IMAGE WARPING + UNET + PP 0.080 0.072

Table 2. Validation threat scores for our architectures on Bounding
Box prediction task

From Table 2, we can see that, the combination of image
warping, U-Net and postprocessing outperforms the other
approaches in the BB prediction task and is our winning
model with a test threat score of 0.072. Adding postprocess-
ing significantly improves the performance of VAE model
from 0.020 to 0.033 on val. Example of predicted probabil-
ity map and corresponding BBs map is shown in Figure 1.
The model tends to predict long blobs, which are later split
to separate BBs at postprocessing step.

6. Unsupervised Approaches
As we had 106 unlabeled scenes, we experimented on using
self-supervised methods to pretrain the shared encoder we
use in our networks.

First, we tried the pretext task called ’Shuffle and Learn’
(Misra et al., 2016), the goal of which is to predict if given
sequence of frames is in correct temporal order or not.

Second, we tried the SimCLR (Chen et al., 2020) contrastive
learning approach, where we try to learn representations that
bring similar samples close to each other in the latent space
and push dissimilar samples far from each other.

From our experiments, we observe that using the pretrained
weights from these tasks did not improve our performance.

7. Future Work
Adding rotation and rescaling as data augmentations should
help reduce overfitting.

To improve the quality of predicted probability maps on
both tasks, we can apply a Conditional Random Field (CRF)
as post-processing as cited in (Lu et al., 2018). Using CRFs
has proved to make predicted segmentation maps less noisy.

The temporal structure of the data can be exploited to make
the predictions smooth across different frames. Also it can
be utilized for unsupervised learning by modifying SimCLR
to do Temporal SimCLR.

Since the model is performing poorly while the car is turn-
ing, we can try oversampling strategies such as SMOTE to
make the model learn turns.
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